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Abstract

The question of agreement of the kinetic moment theory with the first principle continuum thermodynamics is

considered. The characteristics of distribution function describing local non-equilibrium state of monatomic gases are

analyzed. In the first approach on non-equilibrium variables the equations making more exact the results of Chapman

and Enskog are received. The paradox of heat conduction is eliminated and the coincidence of theoretical and

experimental data on dispersion of sound speed in inert gases is improved. � 2002 Elsevier Science Ltd. All rights

reserved.

1. Introduction

The great many of the publications [1–7] is devoted

to development of a locally non-equilibrium thermody-

namics resulting in a hyperbolic equation of heat con-

duction. The new approaches are offered periodically.

Some of them require revision of conventional physical

concepts. For example, in last version of the extended

thermodynamics of irreversible processes the concepts of

production of the heat flux, of the vector flux of heat flux

are entered and the balance equation of a heat flux

similar to balance equations of mass, impulse and energy

is postulated [3]. In the generalized Boltzmann kinetic

theory [8] the equations of mass transfer, impulse and

energy undergo the changes. The additional term of a

non-divergent type enters in them. Thereof the mass of

each material volume of the medium during non-equi-

librium processes takes the variable values.

Obtained by different methods the results are the

important logical step for understanding of locally non-

equilibrium processes. However, despite the variety of

used methods, solution of a so difficult problem is still

far from the complication.

The development of the theory of locally non-equi-

libriumprocesses apart fromonly scientific valuehas large

applied importance. Using the hyperbolic equation of

heat conduction, it is possible to increase accuracy of

calculations of supersonic flows, especially when the

flow velocity is more than or equal to the speed of heat

propagation. The updated relations can also benefit

from the description of fast proceeding processes of

combustion, when the flame spread from the initial

source of reaction appreciably depends on speed of

transfer of a emerging heat.

2. General aspects of the kinetic and phenomenological

theories

The most general-purpose method permitting to re-

ceive the constitutive relations for gases at arbitrary

Knudsen numbers is the method of the moments [9].

The general scheme of this method consists in the fol-

lowing. It is assumed that the distribution function is

given by

f ðt; x;CÞ ¼ F ½C ;Aðt; xÞ�; ð1Þ
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where A ¼ ðA1;A2; . . .Þ – set (finite or infinite) of some

variables. By means of relation (1) the macroscopic

characteristics of gas are expressed by functions Aðt; xÞ.
Then by the help of the Boltzmann equation the set of

equations of the moments closed concerning parameters

Aðt; xÞ is derived. As a rule, the balance equations of

mass, impulse and energy are included in the set of

equations of moments. If it is not enough, the additional

equations of the moments are taken, selection of which

is arbitrary to a certain extent.

In the kinetic theory the criteria of selection of pa-

rameters Aðt; xÞ are not elaborated yet (usually it is done

because of reason of simplicity [9]). Such criteria are

contained in the thermomechanics of continuums [10].

Therefore at usage of kinetic moment theory it is nec-

essary to combine both approaches – kinetic and phe-

nomenological.

Remark. The need of the coordination of general as-

pects of the kinetic and phenomenological theories are

deep roots. In particular, without engaging some min-

imum number of phenomenological equations of state

it is impossible to construct the contansive kinetic the-

ory. To show it, we consider the elementary case

of spatial-uniform stationary state of rarefied gas, be-

havior of which is described by the Boltzmann equa-

tion

Jðf ; f Þ ¼ 0: ð2Þ

The general solution of the Eq. (2) is the function, the

logarithm of which linearly depends on independent

collisional invariants m, mn, mn2=2 [11,12]

ln f ðnÞ ¼ mc1 þ mn � c2 � mn2c3=2: ð3Þ

Here c1, c3 are some positive numbers, and c2 is a fixed

vector. To find values of given variables, there is not

enough of determination of densities, barycentric ve-

locity, specific internal energy per unit mass, stress ten-

sor and velocity of heat conduction

q 	
Z

mf dn; v 	 q�1

Z
mnf dn;

u 	 ð2qÞ�1

Z
mðn � vÞ2f dn;

T 	 �
Z

mCCf dn; C 	 n � v: ð4Þ

Nomenclature

a phase speed

a0 Laplacian sound speed

b specific external body force per unit mass

c specific heat at constant volume

C peculiar velocity of the particle with respect

to the barycentric motion

D symmetric part of the velocity gradient

f distribution function

f0 Maxwellian distribution function

i imaginary unit

I unit tensor

J binary collision integral

k wave number

m the mass of particle

p pressure

q heat flux vector

Q orthogonal tensor

R gas constant

t time

T stress tensor

u specific internal energy per unit mass

v barycentric velocity

w speed of heat propagation

x positions of the point in the actual configu-

ration

X ;Y positions of the points in a fixed reference

configuration

z set of thermodynamic variables

Greek symbols

a thermal constitutive coefficient

f the bulk viscosity

h absolute temperature

H thermodynamic temperature

k heat conductivity

l shear viscosity

n velocity of the particle

q mass density

s time

v set of non-equilibrium variables

x frequency

Indexes

z for local equilibrium volumes

Greek symbols

h for the first thermal constitutive coefficient

q for the second thermal constitutive coeffi-

cient

v for local non-equilibrium volumes

r gradient
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The phenomenological equations of state for equili-

brium gas are necessary: 1

T ¼ �pI ; p ¼ qRh; u ¼ uðhÞ; du ¼ cdh: ð5Þ

Due to these equations it is possible to establish that by

the help of the Boltzmann kinetic equation it is possible

to describe flow of monatomic gases only, at equilibrium
of which the absolute temperature has the following

molecular-kinetic sense:

h ¼ ð3RqÞ�1

Z
mC2f ðnÞdn:

And only after that the equilibrium distribution function

(3) receives the traditional view of the Maxwellian dis-

tribution function

f0 ¼ ðq=mÞð2pRhÞ�3=2
exp½�C2=ð2RhÞ�: ð6Þ

2.1. Structure of the distribution function

In the continuum mechanics the thermodynamic

state is identified with some set of parameters, which are

convenient for dividing by two parts: thermodynamic

variables z and non-equilibrium variables v (the thermo-

dynamic variables characterize the condition of gas at

equilibrium). Each function of a thermodynamic state

depends on t and x by parameters z and v. In particular,

for the stress tensor we have

Tðt; xÞ ¼ T½zðt; xÞ; vðt; xÞ�: ð7Þ

In the Boltzmann kinetic theory the stress tensor is de-

termined as

Tðt; xÞ ¼ �
Z

mCCf ðt; x;CÞdC : ð8Þ

Having compared expressions (1), (7), (8), we come to

conclusion that it is necessary to take thermodynamic

and non-equilibrium variables as independent para-

meters Aðt; xÞ:
f ðt; x;CÞ ¼ F ½C ; zðt; xÞ; vðt; xÞ�: ð9Þ

By the principle of material frame indifference if in one

reference frame is

T ¼ Iðz; vÞ; ð10Þ

then in any other reference frame is

T� ¼ Iðz�; v�Þ: ð11Þ

The replacement of frame is described by the equations

T� ¼ QðtÞ � T �QT ðtÞ; C� ¼ QðtÞ � C : ð12Þ

From Eqs. (8) and (12) the relation followsZ
mCCf �ðt�; x�;C�ÞdC ¼

Z
mCCf ðt; x;CÞdC : ð13Þ

The analysis of equalities (9)–(13) results in a conclusion

that

F ðC �; z�; v�Þ ¼ F ðC ; z; vÞ: ð14Þ

Differently, at replacement of a frame the distribution

function should save not only numerical value, but also

form of function relation from arguments C , z and v.

2.2. State parameters of non-equilibrium gas

The comprehensive information about state of the

medium is yielded by the principle of determinism. Ac-

cording to this principle the value of any physical

quantity H , describing the properties of the given point

of the medium X in the given instant t, can be calcu-

lated, if the law of motion of the medium xðs;Y Þ and

law of change of temperature hðs;Y Þ are known in all

points Y in all prior instants s6 t

Hðt;XÞ ¼ H
s¼t

s¼�1

½xðs;Y Þ; hðs;Y Þ�
8Y : ð15Þ

The main difficulty in application of the principle of

determinism is included in its generality. Even the mon-

atomic gases in different conditions show different

properties. Generally speaking, the exact state equations

should have a rather complex structure.

In a modern thermodynamics the greatest expansion

has received the supposition that the condition of each

point of the medium in the given instant is quite deter-

mined by parameters, the values of which are taken in

the same point and in the same instant. The number of

such parameters is generally indefinite. However at the

description of the outlined group of physical phenomena

it is possible to limit the number of state parameters by

finite value ensuring the acceptable conformity of the

computational and empirical data.

We expand the law of motion xðs;Y Þ and law of

change of temperature hðs;Y Þ in the Taylor series on

power ðs � tÞ, ðY � XÞ and keep the linear members, for

which the required balance equations are the differential

not above the second-order equations. Additionally we

1 On the basis of physical sense of the distribution function

the strict definition can be given for density only. For the

remained values it is necessary to use the additional heuris-

tic reasons (for example, to compare the phenomenological

balance equations of mass, impulse and energy with equations

which are obtained from the kinetic equation by multiplication

of the independent collisional invariants and the following

integration over the space of velocity). But the concept of

barycentric velocity is not such obvious. Sometimes the value v

is defined taking into account the effect of self-diffusion [13–15].

Landau supposes that such step is logically acceptable, but

inexpedient from the physical point of view, because in this case

barycentric velocity is not coinciding with the impulse of mass

unit [16].
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take into account an isotropy and invariance of proper-

ties of gases at quasi-static isochoric–isothermal shearing

strains. Omitting the bulky calculations, we will give only

the final result

T ¼ Tðq; h; _hh;rh;DÞ:

The similar expressions take place for vector of the heat

flux and the internal energy.

Thus, in the considered approximation the non-

equilibrium gas state is described by parameters

z ¼ ðq; hÞ; v ¼ ð _hh;rh;DÞ; ð16Þ

which differ from the state parameters of classical hy-

drogasdynamics by presence of the total time derivative

of absolute temperature _hh.

3. Hydrodynamic equations

Let us proceed from the Boltzmann equation

of
ot

þ of
ox

� n þ of
on

� b ¼ Jðf ; f Þ: ð17Þ

The function (9) is decomposed to components:

f ¼ fzðC ; zÞ þ fvðC ; z; vÞ; ð18Þ

fzðC ; zÞ 	 F ðC ; z; v ¼ 0Þ; ð19Þ

fvðC ; z; vÞ 	 F ðC ; z; vÞ � F ðC ; z; v ¼ 0Þ: ð20Þ

The component (19) depends on velocities of particles

and thermodynamic variables. The component (20) be-

sides depends on non-equilibrium variables. Therefore,

fz is locally equilibrium part and fv is the locally non-

equilibrium part of the distribution function. It is un-

derstandable that in the equilibrium conditions

fvðC ; z; v ¼ 0Þ ¼ 0: ð21Þ

The decomposition (18) results in decomposition of the

stress tensor (8) by components:

Tðz; vÞ ¼ TzðzÞ þ Tvðz; vÞ;

TzðzÞ 	 �
Z

mCCfz dC ;
ð22Þ

Tvðz; vÞ 	 �
Z

mCCfv dC : ð23Þ

For specific internal energy

u 	 0:5q�1

Z
mC2f dC ð24Þ

the similar decomposition takes place

uðz; vÞ ¼ uzðzÞ þ uvðz; vÞ; ð25Þ

uzðzÞ 	 0:5q�1

Z
mC2fz dC ; ð26Þ

uvðz; vÞ 	 0:5q�1

Z
mC 2fv dC : ð27Þ

The explicit view of a function fzðC ; zÞ can be es-

tablished if to consider the spatial-uniform stationary

state of gas. In this case the Eq. (17) by virtue of a

condition (21) accepts the view Jðfz; fzÞ ¼ 0. Therefore fz
coincides with the Maxwellian distribution function (6).

Proceeding from definitions (4), (22), (26) by the help of

relations (6), (18) and phenomenological relations (5) we

receive

q ¼
Z

mfz dC ;

Z
mfv dC ¼ 0;

Z
mCfv dC ¼ 0;

Tz ¼ �pzI ; pz ¼ qRh; uz ¼ 3Rh=2: ð28Þ

Therefore, the absolute temperature and the thermody-

namic pressure should be determined by the formulas

3Rh=2 ¼ 0:5q�1

Z
mC 2fz dC ;

pz ¼
Z

mC2fz dC=3:

ð29Þ

The difference of these formulas from the traditionally

postulated relations consists of the fact that the integ-

rands in expressions (29) contain not the full distribution

function, they contain its locally equilibrium compo-

nent. Therefore the total pressure p 	 �trT=3 differs

from thermodynamic pressure pz by the locally non-

equilibrium component-dynamic pressure pv ¼ p � pz ¼
�trTv=3. Due to expressions (8) and (24) it is possible to

receive relation p ¼ 2qu=3, which links the total pressure

to the internal energy. The similar relation takes place

for the components: pz ¼ 2quz=3, pv ¼ 2quv=3.
Without indicating the reasons the supposition is

usually done that the locally non-equilibrium compo-

nent of internal energy is identically equal to zero. For

example, in the monograph [11] it is marked: ‘‘Certainly,

the other choice of such conditions is admitted also,

but the considered choice results in more suitable form

of the theory’’. However, as shown in the work [5], the

value uv significantly influences the symmetry of the law

of conservation and transformation of energy. Therefore

the question about its existence is open. For example, in

the Boltzmann theory the internal energy is determined

only by the kinetic energy of the heat motion of parti-

cles. However it at all does not mean that the potential

energy of interaction of particles is identically equal to

zero. At certain conditions (dense gases) the potential

energy ceases to be negligibly small. Also in the course

of fast proceeding processes (for example, at propaga-

tion of ultrasonic oscillations) the locally equilibrium

and locally non-equilibrium components of internal

energy become commensurable by value.
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3.1. First approximation of the locally non-equilibrium

component of the distribution function

The locally non-equilibrium component of the dis-

tribution function may be presented as

fv ¼ f0ðC ; zÞ/ðC ; z; vÞ:

By virtue of equalities (6) and (14) it is possible to apply

the theorem for scalar-valued isotropic functions [17] to

the function /. Having entered the denotations

X ¼ ðX1; . . . ;X12Þ;

X1 ¼ _hh; X2 ¼ rh � C ; X3 ¼ trD;

X4 ¼ C �D � C ; X5 ¼ C 2; X6 ¼ rh2;

X7 ¼ trD2; X8 ¼ trD3; X9 ¼ C �D2 � C ;

X10 ¼ rh �D � rh; X11 ¼ rh �D2 � rh;

X12 ¼ rh �D � C ;

let us have

/ ¼ /½z;X ðC ; vÞ�:

As a first approximation on non-equilibrium variables v
we discover

/ ffi ½ðo/=oX Þ � ðoX=ovÞ�v¼0 � v:

Having calculated the appropriate derivative, we receive

fv ¼ f0½U1
_hh þ U2C � rh þ U3trDþ U4ðCCÞ : D�; ð30Þ

where (i ¼ 1; 2; 3; 4)

Uiðq; h;C2Þ ¼ ½o/=oXi�v¼0: ð31Þ

It is easy to notice that the expression (30) contains,

as particular case, first approximation of Chapman–

Enskog [11]. To find the relation (31) in the explicit view

it is possible, for example, properly to modify the

Chapman–Enskog method or to take advantage of the

variational Tamm’s method [9]. However, to receive

closed system of the macroscopic equations, it is enough

to know that the values Ui are even functions of the

components of vector C .

3.2. Constitutive relations

Proceeding from relations (6) and (30), we calculate

values (23) and (27) and vector of the heat flux

q 	 0:5

Z
mC2Cf dC :

In view of the fact that trD ¼ r � v ¼ � _qq=q, we receive

uv ¼ ahðq; hÞ _hh þ aqðq; hÞ _qq; q ¼ �kðq; hÞrh;

Tv ¼ �ð2q=3Þ ahðq; hÞ _hh
n

þ ½aqðq; hÞ � lðq; hÞ=q2� _qq
o
I

þ 2lðq; hÞD: ð32Þ

For the description of the evolution of parameters

(16) there are enough of the balance equations of mass,

impulse and energy which by the usual manner are

concluded from the Eq. (17).

As at _hh ¼ 0 the distribution function (30) becomes

the first approximation of Chapman–Enskog, and the

included in the constitutive relations (32) coefficients ah,

aq, k, l depend only on density and temperature, it is

possible to take advantage of the known results of

Chapman–Enskog [11]

f 	 2q2aq=3 ¼ 0; k ¼ 15Rl=4: ð33Þ

Theoretically coefficient ah can be defined after the

laborious calculations grounded on the appropriate

modification of the Chapman–Enskog method. It is

possible to act easier and to estimate value of a coeffi-

cient ah by direct comparison theoretical and empiric

data about the dispersion of the sound speed in inert

gases.

3.3. Matching with experiment

One of the tasks, the solution of which directly is

connected to the paradox of heat conduction, is the task

about the dispersion of the acoustic waves. Having en-

tered the dimensionless values

�kk ¼ ka0=x; �xx ¼ 3lx=ð5pzÞ; �aah ¼ 20ahpz=ð9RlÞ

and having taken into account relations (33), it is easy to

deduce by the standard method [7] the dimensionless

dispersion relation

½10=3� 3i=ð2 �xxÞ��kk4 þ �xx�2
h

� 2�aah=3

þ ið23=6þ �aah=2Þ �xx�1
i
�kk2 � �xx�2

h
þ i�aah=ð2 �xxÞ

i
¼ 0

and then by the empiric data of Meyer and Sesler 2 to

find the value �aah ¼ 5=4. As result for inert gases the

following value of the thermal constitutive coefficient is

received:

ah ¼ 9l=ð16qhÞ: ð34Þ

The classical (�aah ¼ 0) and updated (�aah ¼ 5=4) theoretical
curves are shown in Fig. 1. As we see, at low fre-

quencies �xx both the theoretical curves are practically

merging. The difference appears at �xx ! 1: according to

the classic theory the phase speed �aa tends to infinity,

whereas according to the updated data the phase speed

is finite.

2 According to the experience for �xx ! 1 the �aa ¼ 2 equality

is to be carried out, where �aa ¼ a=a0, a ¼ x=Re k and a0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
5Rh=3

p
[18,19].
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The updated constitutive relations (32) result in

the following heat conduction equation for the fixed

medium:

qaho
2h=ot2 þ qcoh=ot ¼ kr2h þrk � rh � qðoah=otÞ

� ðoh=otÞ;

which is received from the equation of the internal

energy transfer. It allows by the help of expression (34)

to find the speed of heat propagation in the inert gases:

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðqahÞ

p
¼ 2a0:

As we see, in the inert gases the speed of heat propa-

gation is twice more than adiabatic sound speed.

4. Conclusion

The joint analysis of the general aspects of the kinetic

and phenomenological theories shows that at applica-

tion of the moments method the dependence of the

distribution function on time and coordinates should be

implemented by the state parameters of non-equilibrium

gas. At replacement of the reference system the distri-

bution function saves not only the numerical value, but

also form of the functional dependence on its argu-

ments. If to outline the set of simplifying operations

resulting in the Navier–Stokes–Fourier equations, it is

found that the total time derivative of absolute tem-

perature must be certainly entered to the number of state

parameters. In view of it for the distribution function the

expression which as the first approximation by non-

equilibrium variables updates the Chapman and Enskog

result is received. The updated equations allow us to

overcome the paradox of head conduction.

The existence of the locally non-equilibrium compo-

nent of the internal energy is confirmed by the empiric

data about the dispersion of the sound speed. The ob-

tained results agree with the researches of Green and

Lindsay (in detail see, for instance, [6]), Zarubin and

Kuvyrkin [4], in which the concept of thermodynamic

temperature H as function depended on absolute tem-

perature h and its change speed _hh are entered. If the

thermodynamic temperature was defined by the equa-

tion 3RH=2 ¼ u, by the expressions (25), (28), (32), (33)

as basis we receive

H ¼ h þ 2ah
_hh=ð3RÞ:

In the spatially uniform non-stationary conditions the

thermodynamic temperature of the isolated volume of

gas remains constant, and absolute temperature changes

according to the exponential law, relaxing to the equi-

librium value h ¼ H.

We mark that in the phenomenological thermody-

namics the absolute temperature is considered as the

extent of heat content and is entered in the determinism

principle (15) as primary concept. As the difference of

the extent of heat content is inherent in points of the

medium in any non-equilibrium condition, the fact of

the existence of absolute temperature is not subject to

doubt.
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